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Context and motivation

I Goal: an agent able to negotiate when:
» the protocol is bargaining with or without deadline

» goods are mulfi-issues, categorical and/or contfinuous
| Example: invoice trading for supply chain

| BOA [1]: Bidding Strategy, Opponent modeling & Acceptance strategy
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Opponent modeling
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I Opponent modeling: opponent bidding strategy

I Gaussian Process regression (extension of multivariate Gaussian) [8]

Let (x;, yi). Suppose:
2
[~ N(O,K (X))
25 Yn
%5 with K, covariance matrix representing the proximity of the negotiation turns with each
. others, according to a covariance function k:

K(x) = (ki) = (K0, %))

Then, we predict for turn xy:

1
L~ N(O,K (X, X))
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I Opponent modeling: opponent bidding strategy

Following multivariate Gaussian theorem:
Vi = KeK™ly
Oy = Val'(y*) = K** — K*K_]K;

Where K* = (k(X*7X'|),. . 7k()(,k,)(n)) eT K** = k(X*,X*).
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I Opponent modeling: opponent utility

| Based on Bayesian learning [6]
| Bayesian learning hypothesis: 0.8 7]
» friangular functions f; for each issue 06 i
» arank fo;i’rhe issue i — weight =
Wi = QW 0.4 .
| For an offer (x,,. .., xn), prediction: 0.2 _
hb) = > wi-ti(x)
I<i<n r%inA maXa

A
THALES




I Opponent modeling: opponent utility

| Probability of each hypothesis supposed Gaussian
| Concessions supposed monotonous and approx. regular

> (r U°: b 1—ay- round(b), whith oy, @ parameter)

P(blhy) =

u; —u0 2
1 -e‘LA@ZTg&’eTPGMb)= P(hy)P(blhy)
o -V2r P(hi)P(blhi)

k<m

» P(h;) updated when an offer b received. Model: weighted sum

u= Y P(ho)-h

| effective for numerical a issues, can be easily generalized to categorical
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Bidding satrtegy: MCTS

Opponent

receives modeling

Bidding
strategy

Acceptance
strategy

r:( History ) ( Domain ) ( Utility ):'

proposal

sends

accept

THALES



I Bidding satrtegy: MCTS
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I Bidding satrtegy: MCTS

o) ®—
Selection CP
Criterion: max” Fo—]

(1,3) 4] @0

QOO@ e

‘&;; (1,2)(2,3)(3,2)

o P e THALES



I Bidding satrtegy: MCTS
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I Bidding satrtegy: MCTS
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I Bidding satrtegy: MCTS
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I Bidding satrtegy: MCTS

Selection of j maximizing [4]:

¢ =N _1copes, O]
nj+1 n+1

with n fotal number of simulations, n; numiber of times j has been simulated
= and X; average score of j, C and as model parameters.
. Expansion of a new node iff [4]
Np® = Ne
with np number of times the parent has been simulated and nc number of its
children.

Simulation based on opponent models of bidding strategy & ufility
Backpropagation of the scores; agent & opponent scores
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I Bidding satrtegy: MCTS

| Simulation & backpropagation based on opponent models:
» strategy model (gaussian process regression) [8]
» utility model (apprentissage bayésien) [6]

I Pruning
> based on opponent’s offers

» delete nodes whose utility is lower than the best opponent proposalsuppression des
noeuds dont I"utilité est pire que la meilleure proposition adverse,
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Acceptance strategy
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I Overview
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I Experiments

| Agents that can negotiate without deadlines:
» RandomWalker [2],
» Tit-for-tat [5],
» Nice Tit-for-tat [2].
I Negotiation domain: ANAC 2014 [7]
» very large (discrete though),
» numerical,
> nonlinear preferences,

» set without deadline.




I Results

Negotiating with Nice Tit-For-Tat: unable to conclude; negotiations never end
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I Conclusion and perspectives

| Conclusion:

» an agent able to negotiate without predetermined deadline with contfinuous &
categorical issues,

» negotiation strategy based on MCTS, with 2 opponent models and pruning,

» experimental results: outperforms Random Walker & Tit-for-Tat; no significant
difference with Nice Tit-for-Tat.

| Perspectives:
» customized version to adapt o the context where the deadline is known,
» adapt to the multilateral context,
» use MCTS variations & improvements (AMAF, RAVE. . .) [3].
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