Un système multi-agent pour une place de marché de factures

Cédric Buron

Directrice de thèse: Zahia Guessoum Co-encadrants: Sylvain Ductor

kyriba

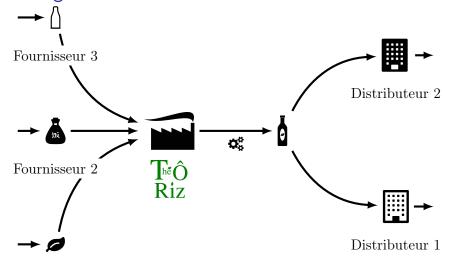
Ólivier Roussel

LE PROJET

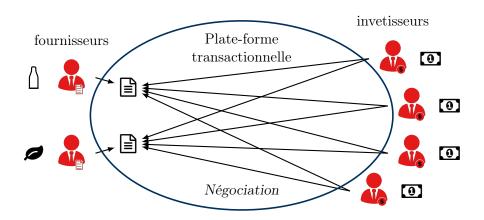
Projet FUI Risk, Credit line and Supply chain Management

Contexte Besoin en fonds de roulement : risque pour les entreprises exemple : 2015 : 981 m^{ds}€ perdus à cause de mauvaises pratiques.

But Aider à la gestion du BFRR


Membres du consortium

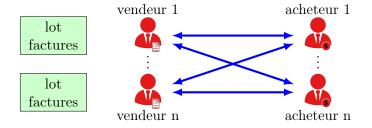
Projet FUI Risk, Credit line and Supply chain Management


Il était une fois une bouteille de thé...

Projet FUI Risk, Credit line and Supply chain Management

Fournisseur 1

Projet FUI Risk, Credit line and Supply chain Management


PROBLÉMATIQUE

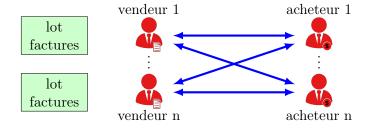
DE LA THÈSE

Trois éléments principaux (Baarslag2015Learning):

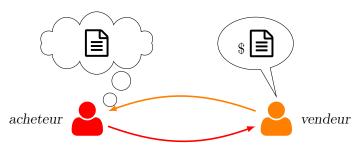
Bien : lots de factures automatiser la création Protocole : règles de négociation choisir le protocole

Agents: acheteurs/vendeurs automatiser la négociation

Trois éléments principaux (Baarslag2015Learning):

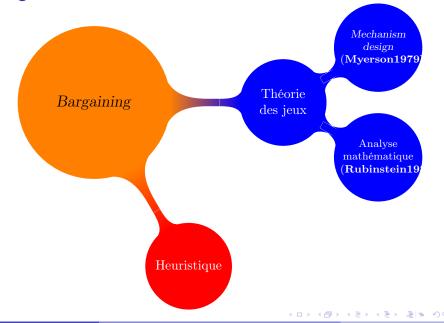

lots de factures Bien:

Protocole: règles de négociation choisir le protocole Agents:


acheteurs/vendeurs

automatiser la création

automatiser la négociation



Bargaining

3 actions possibles:

- faire une contre-proposition,
- \bullet accepter la proposition du partenaire \rightarrow accord
- \bullet refuser la proposition du partenaire \rightarrow désaccord

Notre proposition : considérer la négociation comme un jeu extensif

- joueurs : acheteur et vendeur
- préférence des joueurs sur les états finaux des jeux : profil de préférence
- mouvements possibles : protocole de négociation
- tours de jeux : définis par le protocole

Problème

- Comment contrer les agents curieux?
 - agents cherchant à obtenir des informations confidentielles sur l'adversaire
 - cause de ralentissement, d'annulation et de déséquilibres de négociation
- Comment automatiser la négociation dans une configuration réaliste?
 - domaine de négociation composé d'attributs quantitatifs et catégoriels
 - pas nécessairement de bornes à la négociation

Bargaining et agents curieux

Limitation du bargaining

Modification

Initialisation : Prix de réserve non compatibles

Mécanisme de mise en relation des agents *via* un tiers de confiance ssi leurs prix de réserve sont compatibles

Échange de propositions :

2 Allongement artificiel de la négociation Limitation du nombre d'échanges

Issue: Gratuité du refus d'une proposition adverse

Obligation de la transistion au prix annoncé

Bargaining et agents curieux

Soit un bargaining entre un acheteur p curieux et un vendeur s:

- $\pi_a(k)$ le prix de réserve d'un agent au tour k et
- k^{max} l'étape à laquelle la négociation est arrêtée (échéance)

Théorème

Le protocole bilatéral donne une incitation à p à déclarer un prix de réserve inférieur ou égal à $\pi_p(k^{\mathsf{max}})$.

Théorème

Le protocole bilatéral donne une incitation à p et s à chercher un accord plutôt que rejeter une offre ou atteindre l'échéance.

MOCANA

Contexte et motivation La négociation automatique

Domaine de recherche automatisant la négociation par l'introduction d'agents autonomes.

- compétition créée en 2011 Automated Negotiation Agent Competition
- domaine de recherche allant vers plus de concret
- applications possibles : allocation de ressources, e-commerce...

Objectif d'un agent : trouver un accord qui soit intéressant pour lui et acceptable pour le partenaire « dilemme de la négociation »

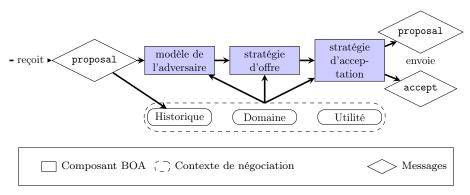
Contexte et motivation La négociation automatique

Problématique : concevoir un agent capable de négocier dans un contexte très général :

- protocole:
 - bargaining
 - avec ou sans borne
- biens:
 - multi-attributs
 - attributs catégoriels et/ou continus

État de l'art

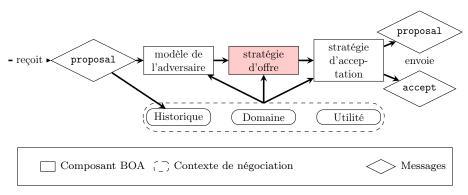
Principaux agents de négociation automatique :


- IAMhaggler (Williams2012),
- AgentSmith (GalenLast2012),
- WhaleAgent (Sato2016),
- GROUP2 (Szoellosi2016),
- Gangster (Jonge2016)

Aucun agent n'est capable de négocier dans notre contexte.

Contexte et motivation La négociation automatique

Architecture BOA (Baarslag2016):


- Bidding Strategy ou stratégie d'offre
- Opponent modeling ou modélisation de l'adversaire
- Acceptance strategy ou stratégie d'acceptation

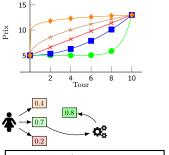
Contexte et motivation La négociation automatique

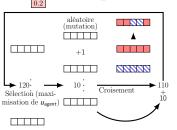
Architecture BOA (Baarslag2016):

- Bidding Strategy ou stratégie d'offre
- Opponent modeling ou modélisation de l'adversaire
- Acceptance strategy ou stratégie d'acceptation

Stratégie d'offre

Méthode illustration

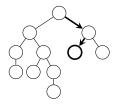

×

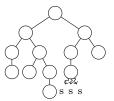

Tactiques WhaleAgent

(Faratin1998Negotiation) (Sato2016)

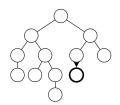
Offres de l'adversaire GROUP2 (Szoellosi2016)

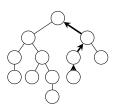
Algorithmes génétiques Gangster (Jonge 2016)





Stratégie d'offre : MCTS


- Adaptation de Monte Carlo Tree Search
 - heuristique utilisée dans les jeux
 - efficace pour les jeux à large facteur de branchement


(a) Sélection

(c) Simulation

(b) Expansion

(d) Rétropropagation

Stratégie d'offre : MoCaNA

Sélection le fils sélectionné j est celui qui maximise :

$$C_j = \frac{\bar{X}_j}{n_j + 1} + C \cdot n^{\alpha} \sqrt{\frac{\ln(n)}{n_j + 1}}$$

avec n le nombre total de simulations, n_j le nombre de simulations de j et \bar{X}_j le score moyen de j, C et α des paramètres du modèle.

Expansion Un nouveau nœud est étendu quand

$$n_p^{\alpha} \geqslant n_c$$

avec n_p le nombre de fois où le parent a été simulé et n_c le nombre d'enfants qu'il a.

Le nouveau nœud étendu est aléatoire.

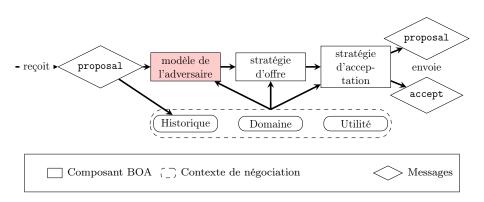
Sélection et expansion reposant sur le progressive widening

Stratégie d'offre : MoCaNA

Simulation Repose sur la modélisation des stratégies d'offre et d'acceptation

Rétropropagation Rétropropagation des scores ; score de l'agent et score modélisé de l'adversaire

Simulation et rétropropagation reposant sur les 2 modèles de l'adversaire :


- modèle de la stratégie (régression de processus gaussien)
 (Williams2011Using)
- modèle de l'utilité (apprentissage bayésien)
 (Hindriks2008Opponent)

Stratégie d'offre : MoCaNA

Deux variantes d'élagage

- selon une valeur fixe:
 - suppression des nœuds dont l'utilité est au-dessous d'un seuil,
 - · valeur déterminée en fonction de l'utilité attendue,
 - ici, valeur seuil de 0.8.
- 2 selon les offres de l'adversaire :
 - suppression des nœuds dont l'utilité est pire que la meilleure proposition adverse,
 - pas de nécessité de déterminer une utilité attendu a priori.

Modélisation de l'adversaire

Modélisation d'adversaire

Utilisation d'apprentissage automatique pour modéliser certains aspects de l'adversaire (Baarslag2015Learning)

5 éléments modélisés dans la littérature :

- stratégie d'offre
- profil de préférence
- stratégie d'acceptation
- borne (temps ou nombre de tours)
- prix de réserve

Modélisation d'adversaire

Utilisation d'apprentissage automatique pour modéliser certains aspects de l'adversaire (Baarslag2015Learning)

5 éléments modélisés dans la littérature :

- stratégie d'offre
- profil de préférence
- stratégie d'acceptation
- borne (temps ou nombre de tours)
- prix de réserve

Modélisation d'adversaire : stratégie d'offre

Méthode	illustration	adai	Poti	\$toc)	atti.
Régression IAMhaggler (Williams2012)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	×	×	×	×
Réseaux de neurones (Oprea2003)	t_n \vdots t_{n-k+1} t_{n-k} t_{n-k}	√	✓	×	×
Régression de processus gaussien IAMhaggler2011 (Williams2011Using)	thesis-figure68.pdf	√	√	✓ = -1	

Modélisation d'adversaire : stratégie d'offre

• Processus gaussien : extension de la gaussienne multivariée Soit (x_i, y_i) . On suppose :

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \sim \mathcal{N}(\mathbf{0}, K(x_i))$$

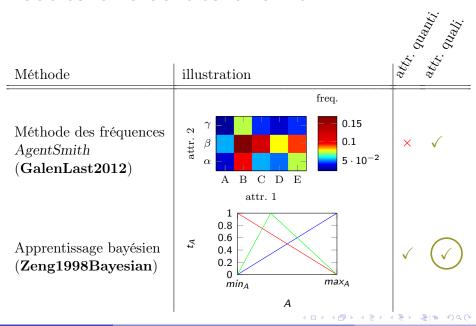
avec K, matrice de covariance représentant la proximité des tours entre eux, selon une fonction de covariance k:

$$K(x_i) = (k_{jk}) = (k(x_i, x_k))$$

Alors la prédiction pour le tour x_* :

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \\ y_* \end{pmatrix} \sim \mathcal{N}(\mathbf{0}, \mathcal{K}(x_i, x_*))$$

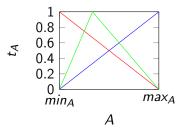
Modélisation d'adversaire : stratégie d'offre


Théorème sur les gaussiennes multivariées :

$$\begin{cases} \bar{y_*} = K_* K^{-1} \mathbf{y} \\ \sigma_* = \operatorname{var}(y_*) = K_{**} - K_* K^{-1} K_*^\top \end{cases}$$
 où $K_* = (k(x_*, x_1), \dots, k(x_*, x_n))$ et $K_{**} = k(x_*, x_*)$.

thesis-figure68.pdf

thesis-figure69.pdf


Modélisation d'adversaire : utilité

Modélisation d'adversaire : utilité

Hypothèses de l'apprentissage bayésien :

• fonctions triangulaires t_i pour chaque attribut

• un rang τ_i pour l'attribut i et du poids $w_i = 2 \frac{\tau_i}{n \cdot (n+1)}$ pour une proposition (x_1, \dots, x_n) , prédiction de l'hypothèse

$$h(b) = \sum_{1 \leq i \leq n} w_i \cdot t_i(x_i)$$

Modélisation de l'adversaire : utilité

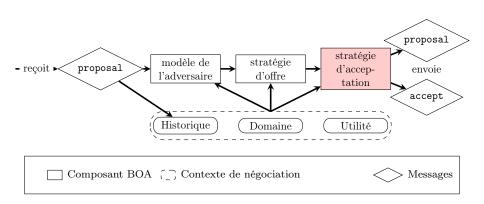
Suppositions

- Probabilité de chaque hypothèse : gaussienne
- Concessions monotones et régulières (proches de $u^0: b \mapsto 1 \alpha \cdot round(b)$, avec α à déterminer)

Donc

$$P(b|h_j) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot e^{-\frac{\left(u_j(b) - u^0(b)\right)^2}{2\sigma^2}} \text{ et } P(h_j|b) = \frac{P(h_j)P(b|h_j)}{\sum\limits_{k \leq m} P(h_k)P(b|h_k)}$$

Mise à jour de $P(h_j)$ à chaque réception d'une proposition b. Modèle : somme pondérée des hypothèses


$$u = \sum_{i} P(hj|b) \cdot h_{j}$$

- Efficace pour les attributs numériques,
- Généralisation naturelle aux attributs catégoriels.

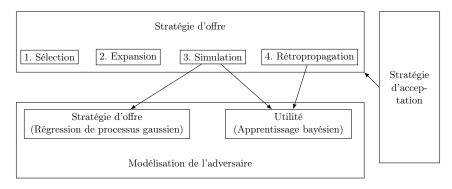
Modélisation de l'adversaire : stratégie d'acceptation

- Utilisation des modèles de stratégie et d'utilité :
 - supposition d'une stratégie d'acceptation myope,
 - déductible du modèle d'utilité et du modèle de stratégie d'offre.
- Réseaux de neurones :
 - ▶ proposition faite par l'adversaire ~ acceptable,
 - prise en compte des négociation précédentes si disponible.

Stratégie d'acceptation

Stratégie d'acceptation

Trois types de stratégies :

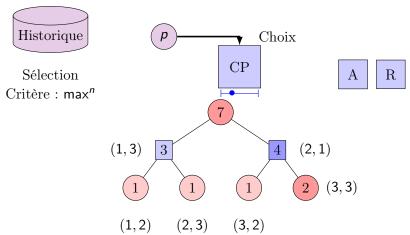

- stratégies myopes
 - accepter si proposition adverse meilleure que dernière proposition de l'agent
 - accepter si proposition adverse meilleure que prochaine proposition de l'agent
 - accepter si proposition adverse meilleure que meilleure proposition de l'agent
 - accepter si proposition adverse meilleure qu'un seuil prédéfini
- mélange de stratégies myopes, selon la distance à la borne
- stratégie « optimale »
 - modélisation la stratégie adverse
 - calcul du tour auquel la proposition adverse sera la meilleure
 - mise à jour chaque tour
 - accepter ssi le tour est optimal et la proposition est acceptable

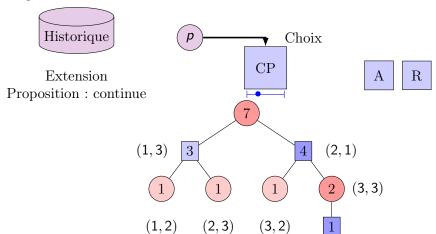
Stratégie d'acceptation

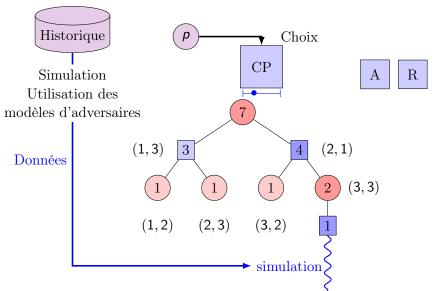
Trois types de stratégies :

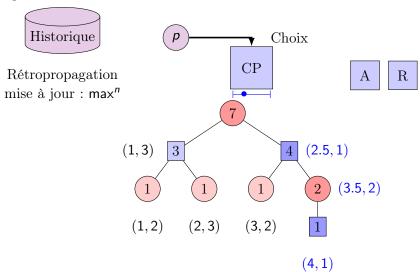
- stratégies myopes
 - accepter si proposition adverse meilleure que dernière proposition de l'agent
 - accepter si proposition adverse meilleure que prochaine proposition de l'agent
 - accepter si proposition adverse meilleure que meilleure proposition de l'agent
 - accepter si proposition adverse meilleure qu'un seuil prédéfini
- mélange de stratégies myopes, selon la distance à la borne
- stratégie « optimale »
 - modélisation la stratégie adverse
 - calcul du tour auquel la proposition adverse sera la meilleure
 - mise à jour chaque tour
 - accepter ssi le tour est optimal et la proposition est acceptable

Architecture




Exemple




(2, 1)

(0, 0)

Évaluation: Implémentation

- Langage : Java
- Bibliothèques :
 - ▶ JaMa
 - Apache Commons Math
- Multithreadé
- Décorrélé du framework

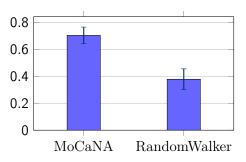
./diagramme_classes.png

Évaluation: Protocole expérimental

- utilisation des agents ANAC 2014
 - présence d'une échéance,
 - domaines très larges mais non continus,
 - fonctions d'utilité non linéaires,
- implémentation d'un RandomWalker
 - pas d'échéance,
 - même domaine, mêmes profils d'utilité.

Évaluation : résultats Sans élagage

Adversaire	Score adversaire	Score MoCaNA	Taux d'accord
AgentM	$0.882\ (\pm0.069)$	$0.655 (\pm 0.076)$	0.35
DoNA	$1.000 \ (\pm 0.000)$	$0.572 (\pm 0.000)$	0.05
Gangster	$0.814 \ (\pm 0.130)$	$0.637 \ (\pm 0.142)$	0.45
Whale	$0.779 (\pm 0.164)$	$0.697 \ (\pm 0.113)$	0.45
Group2	$0.689 \ (\pm 0.211)$	$0.822\ (\pm0.194)$	0.45
kGAgent	$0.977 (\pm 0.085)$	$0.554 (\pm 0.047)$	0.20
AgentYk	$0.806 \ (\pm 0.174)$	$0.752 (\pm 0.154)$	0.15
BraveCat	$0.622(\pm 0.170)$	$0.749 \ (\pm 0.101)$	0.95


Évaluation : résultats Avec élagage variable

Adversaire	Score adversaire	Score MoCaNA	Taux d'accord
AgentM	$0.770 \ (\pm 0.113)$	$0.656 \ (\pm 0.077)$	0.10
DoNA	$0.857 (\pm 0.005)$	$0.547 \ (\pm 0.058)$	0.10
Gangster	$0.563 \ (\pm 0.221)$	$0.702 \ (\pm 0.162)$	0.55
Whale	$0.639 \ (\pm 0.085)$	$0.768 \ (\pm 0.097)$	0.25
Group2	$0.534 \ (\pm 0.075)$	$0.786 \ (\pm 0.098)$	0.45
kGAgent	$1 \ (\pm 0.0)$	$0.485 \ (\pm 0.0)$	0.05
AgentYk	$0.771(\pm 0.128)$	$0.637(\pm 0.106)$	0.15
${\bf BraveCat}$	$0.519(\pm 0.232)$	$0.662\ (\pm0.121)$	1.0

Évaluation : résultats Avec élagage fixe

Adversaire	Score adversaire	Score MoCaNA	Taux d'accord
AgentM	$0.699 (\pm 0.078)$	$0.847 \ (\pm 0.016)$	0.15
DoNA	N/A	N/A	0
Gangster	$0.534 \ (\pm 0.193)$	$0.852 \ (\pm 0.049)$	0.55
Whale	$0.708 \ (\pm 0.064)$	$0.832 \ (\pm 0.020)$	0.45
Group2	$0.530 \ (\pm 0.061)$	$0.870\ (\pm0.039)$	0.45
kGAgent	N/A	N/A	0
AgentYk	$0.712(\pm 0.074)$	$0.841(\pm 0.025)$	0.10
BraveCat	$0.487(\pm 0.195)$	$0.855 (\pm 0.066)$	0.95

Évaluation : résultats Contexte sans borne

MoCaNA sans élagage VS RandomWalker

Évaluation: interprétation

Agent très efficace dans le cas sans échéance Cas avec échéance :

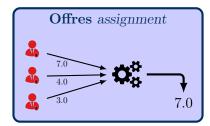
- score en cas d'accord :
 - ▶ sans élagage : meilleur que BraveCat et Group2 uniquement
 - élagage variable : meilleur que la moitié des finalistes
 - élagage fixe : meilleur que tous les finalistes avec lesquels il trouve un accord
- baisse du taux d'accord
 - pas de « Time Pressure »
 - diminution en cas d'élagage

CONCLUSION

Contributions

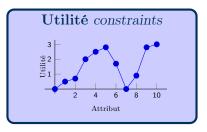
- Association du bargaining à un jeu extensif
- Protocole:
 - efficace contre les agents curieux
 - conservation de l'aspect extensif de la négociation
 - propriétés mathématiques
 - implémentations bilatérales et 1:n
- MoCaNA :
 - capable de négocier dans un contexte très général (protocole, attributs)
 - très efficace dans le contexte sans borne
 - efficace dans un contexte avec borne

Perspectives

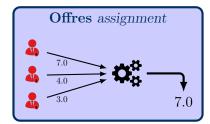

- Extension à des modèles d'utilité plus complexes
- Application/comparaison avec des agents humains
- Utilisation de la plate-forme
- Protocole:
 - incitation à l'honnêteté
 - attributs discrets
- MoCaNA:
 - autres améliorations MCTS AMAF, RAVE
 - implémentation sur GPGPU

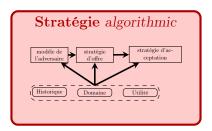

MERCI!

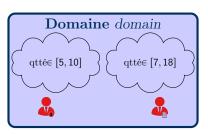
Bibliographie I

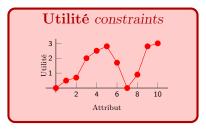

Confidentialité

(Grinshpoun2012)

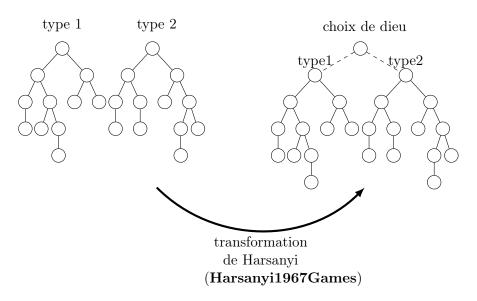


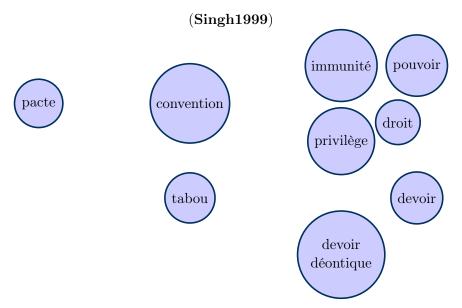


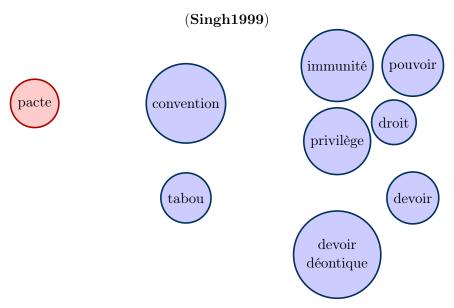



Confidentialité

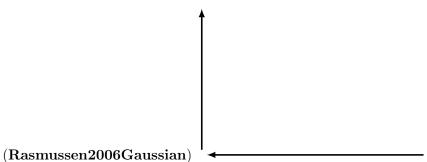
(Grinshpoun 2012)

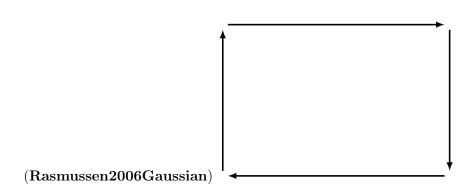





Jeux stochastiques partiellement observables

Engagement et normes sociales


Engagement et normes sociales


Classification avec la régression de processus gaussien

(Rasmussen2006Gaussian)

Classification avec la régression de processus gaussien

Classification avec la régression de processus gaussien

